-
W32.FunLove
Boolschen term vereinfachen
Hi,
ich hänge grad bei einer aufgabe bei folgenden term (thema logik):
¬ = negation
xy = x und y
x+y = x oder y
aufgabe: ¬xy¬z + ¬z + ¬((¬x¬y)z) +y¬x
ich würde so anfangen:
-de Morgan gesetz anwenden : ¬((¬x¬y)z) = x+y¬z
-letzten literale sortieren
¬xy¬z + ¬z + x+y¬z + ¬xy
Wie mache ich jetzt am geschicktesten weiter? Kann ich hier ausmultiplizieren oder erweitern? der prof erklärt sowas einfach zu freaky xD
MFG
-
-
Master of Porn
AW: Boolschen term vereinfachen
Aufgabe: ¬xy¬z + ¬z + ¬((¬x¬y)z) +y¬x
¬xy¬z + ¬z + ¬xy + ¬((¬x¬y)z)
= ¬xy¬z + ¬z + ¬xy + (¬(¬x¬y) + ¬z)
= ¬xy¬z + ¬z + ¬xy + ((x + y) + ¬z)
= ¬xy¬z + ¬z + ¬xy + x + y + ¬z
= ¬xy¬z + ¬z + ¬xy + x + y
= ¬xy¬z + ¬z + (¬x+x)(x+y) + y
= ¬xy¬z + ¬z + (x+y) + y
= ¬xy¬z + ¬z + x + y + y
= ¬xy¬z + ¬z + x + y
= (x+¬x)(x+y)(x+¬z) + ¬z + y
= (x+y)(x+¬z) + ¬z + y
= x + y¬z + ¬z + y
= x + (y+y)(y+¬z) + ¬z
= x + y(y+¬z) + ¬z
= x + y + ¬z
Keine Garantie auf Korrektheit
Geändert von sp1nny (16.10.2016 um 21:42 Uhr)
-
Folgende Benutzer haben sich für diesen Beitrag bedankt:
Daywa1k3r (17.10.2016), sn0w (16.10.2016)
-
Support-Hure
AW: Boolschen term vereinfachen
Endergebnis stimmt, aber ich bin jetzt nicht nochmal alle Schritte durchgegangen.
Hier sind übrigens die Mittel, um den Term zu vereinfachen:
https://de.wikipedia.org/wiki/Booles...bra#Definition
-
Folgende Benutzer haben sich für diesen Beitrag bedankt:
-
W32.FunLove
AW: Boolschen term vereinfachen
Danke euch beiden! Diskrete Mathematik ist einfach zu schoin.
-
Berechtigungen
- Neue Themen erstellen: Nein
- Themen beantworten: Nein
- Anhänge hochladen: Nein
- Beiträge bearbeiten: Nein
-
Foren-Regeln